
Unstructured Mesh Handling for

Extreme-Scale Computing

Timothy J. Tautges

Computational Scientist

Mathematics & Computer Science Division

Argonne National Laboratory

Outline

 MOAB

– Overview: mesh & simulation

– 2-slide overview

– Data model

– Basic mesh access

– Sets & tags

– Parallel mesh access

– iMeshP

 CGM/Lasso

– CGM 1-slide overview

– Lasso 1-slide overview

 Usage: MOAB-native tools

 Usage: mbpart / Zoltan

 Usage: mbcoupler

Argonne Training Program in Extreme-Scale Computing
2

Introduction

Continuous domain
(geometry)

Discrete domain
(mesh)

FEA

 PDE-based simulation discretizes PDEs over a discrete representation of the spatial
and often time domain, and solves for specific discrete model(s)

 Sometimes geometric details of the spatial domain are important, sometimes not

– MPP-enabled resolution should resolve geometric features (where possible & useful?)

 Depending on the geometric features & resolution requirements, generating the
mesh can be either trivial or not

 Mesh, and data on the mesh, are involved in simulation at the front (generation),
middle (simulation), and back (viz & data analysis)

Argonne Training Program in Extreme-Scale Computing
3

Mesh-Oriented datABase (MOAB)

 Library for representing, manipulating structured, unstructured mesh models

 Supported mesh types:

– FE zoo (vertices, edges, tri, quad, tet, pyramid, wedge, knife, hex)

– Polygons/polyhedra

– Structured mesh

 Implemented in C++, but uses array-based storage model

– Efficient in both memory and, for set-based access, in time

 Mesh I/O from/to various formats

– HDF5 (custom), vtk, CCMIO (Star CD/CCM+), Abaqus, CGM, Exodus

 Main parts:

– Core representation

– Tool classes (skinner, kdtree, OBBtree, ParallelComm, …)

– Tools (mbsize, mbconvert, mbzoltan, mbcoupler, …)

 Parallel model supports typical element-based decompositions, with typical mesh-based
functions (shared interface, ghost exchange, ownership queries)

 Runs on 32k+ cores

Argonne Training Program in Extreme-Scale Computing
4

Parallel Mesh Model

 Definitions:

– Element-based partition:
decomposition of mesh over processors such that
each element assigned to exactly one proc/part,
with vertices shared between parts

– Shared entity: an entity represented on
multiple procs

– (Part) interface entity: entity shared by multiple parts
(vertices, edges, faces in a 3D mesh & element-based partition)

– Owned entity, owner: each mesh entity owned by exactly one proc

– Ghost entity: shared non-owned entity (sometimes referred to as “halo”)

 “Degree” of parallel-ness depends on application requirements, and can be adjusted as
needed during calculation

– Duplicated model on every proc

– Domain-decomposed

– Shared vertices, non-vertices

– 1 or more layer of ghost elements

5

P0 P1

P2

v1v2

v3v5

v4

e1

e2

t1

t2

t3

v4v1

v3v2

t1

t2

v5

v6

e2

e1

t3

t4

v2
v1

v5

t1

t2

v3

e2

t3

e1 e1

v4

e3

MOAB Parallel Mesh Model

 Parallel model based on element-based partition

– Each element assigned to exactly one part, with entities optionally shared between parts/procs

– Arbitrary number of layers of ghost elements

 Supported parallel mesh constructs:

– For each shared entity, every sharing proc knows all other sharing procs & handles on those

– Sharing data stored as either single int/handle (shared with 1 other proc) or mult sharing
procs/handles

– Ghost/owned status also stored

– Stored in 1-byte ‘pstatus’ bitmask tag

 Parallel model usually initialized by loading from some decomposition in file

– Can be any subset structure that’s a “covering” (each entity in exactly 1 subset)

– Material set, geometric volume, or Zoltan-generated partitioning

 Single-file parallel read/write using parallel HDF5

 All parallel functionality usually accessed through ParallelComm class

Argonne Training Program in Extreme-Scale Computing
6

MOAB Data Model

 4 basic types of data:

– Entities (FE zoo, polygons, polyhedra)

– Sets (collections of entities & sets, parent/child links)

– Tags (annotation of data on other 3)

– Interface (OOP, owns data)

 Tags used for both fine-grained and coarse-grained data

– Fine grained: vertex-based temperature

– Coarse-grained: provenance of mesh

 Sets + tags used for a variety of mesh groupings

Argonne Training Program in Extreme-Scale Computing
7

Design velocitiesParallel Partitions

Geometric model topology

8

MOAB Entity Storage

EntityHandle:
• Fundamental unit of

access in MOAB
Bitmask of type, id

4-bit 28-or 60-bit

type id

Dense tag 3

Dense tag 2

Dense tag 1

Connectivity

Dense tag 4

Dense tag 2

Coords

EntitySequence:
 Represent used portions of handle space
 Have pointer to SequenceData
 Have start and end handle values
 Arranged in binary tree by start handle

Typically one
EntitySequence for an
entire SequenceData

SequenceData:
 Represent allocated portions of handle space
 Have start and end handle
 Coordinates or Connectivity, + Dense Tag Data

Linked list of all SequenceDatas
for a single entity type

Cache most
recently
accessed
EntitySequence

Range:
• Class for storing lists of handles
• Near constant-size for near-contiguous

subranges of handles
• Methods for efficient Booleans on lists

…

Start1, end1

Start2, end2

MOAB Mechanics (I)

 MOAB implemented in C++, but internally uses array-based storage

– More memory efficient for simulation, with functionality appropriate for all uses

 Data accessed through a MOAB instance

– Multiple instances can co-exist, but single instance is not thread-safe

– Parallel instances independent except through parallel mesh constructs mentioned earlier

 MOAB supports a variety of platforms

– Linux, MacOS, IBM BG/x, Cray

– Windows maybe coming soon

 MOAB configure/build process using autoconf OR cmake

– Makefile “snippets” built to simplify using it in application makefiles (examples later)

– Can build with no dependencies, but you should probably build with NetCDF and HDF5

– For the purposes of this training course, MOAB already built on Vesta

– You can also build a local copy on your machine, and in many cases it’s easier to learn that way

http://trac.mcs.anl.gov/projects/ITAPS/MOAB/wiki

Argonne Training Program in Extreme-Scale Computing
9

HelloMOAB: Basic Mesh Access
http://www.mcs.anl.gov/~fathom/moab-docs/html/HelloMOAB_8cpp-example.html

 Interface instantiation using moab::Core constructor

– Normally, all MOAB access should be through moab:: namespace, not used here for brevity

 Mesh can be loaded from file (Interface::load_file) or created in-place
(Interface::create_vertex, Interface::create_element)

– MOAB source comes with various mesh files, in MeshFiles/unittest/…

 Lists usually handed through interface as either Range or std::vector<EntityHandle>

Argonne Training Program in Extreme-Scale Computing
10

http://www.mcs.anl.gov/~fathom/moab-docs/html/HelloMOAB_8cpp-example.html

GetEntities: Basic Mesh Access
http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

 MOAB provides functions for getting handle type, id (type_from_handle,
id_from_handle)

– These are bitmask functions, you could implement your own in C/C++

– EntityType enumeration: MBVERTEX, MBEDGE, … (use Doxygen to find definition)

– Ids usually assigned in sequence, starting with 1 (note, 0 is never a valid id, except for handle 0,
which refers to the “root set” or instance)

 Range provides API very similar to std::vector

– begin(), end(), rbegin(), etc.

– Range::range_inserter type for handing to std::copy

 moab::CN class for Canonical Numbering

– Tells how vertices, edges, faces are numbered in local element

– Provides functions for e.g. getting string name, getting # edges in an element, etc.

Argonne Training Program in Extreme-Scale Computing
11

http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

Intermediate-Dimension Entities (“aentities”)

 Explicit representation of edges and edges/faces in 2D, 3D meshes is optional

– Sometimes useful (e.g. adaptive refinement), sometimes not

– For tetrahedral meshes, can increase memory cost by ~4-6x, hex meshes slightly lower

 “Real” meshes usually come with aentities necessary for defining boundary condition
groupings, but no other ones

 In MOAB:

– You can request creation of aentities by requesting them from adjacency calls with
“create_if_missing” argument = true

– Calling get_entities_by_xxx will return only those explicitly represented

 To force creation of interior edges/faces for whole mesh:

– Get all vertices using get_entities_by_dimension with dim = 0 (use Range version)

– Call get_adjacencies with to_dimension = 1 or 2 and create_if_missing = true

Argonne Training Program in Extreme-Scale Computing
12

MOAB get_adjacencies Allows Booleans on Results List

 get_adjacencies(from=v1-v4; to_dim=2; op=INTERSECT;to_list=<empty>) = q1

 get_adjacencies(from=v3; to_dim=2; op=UNION;to_list=<empty>) = q1, q2

 get_adjacencies(from=v3-v4; to_dim=2; op=INTERSECT; to_list=<q2,q3>) = q2

 Useful for reducing lines of code for mesh query & list manipulation

 Interface::Range also defines Boolean operations, for both code reduction and time
efficiency

Argonne Training Program in Extreme-Scale Computing
13

v1

v2

v3

v4

v5

v6

q1 q2

v7

v8

q3

Sets & Tags
 The combination of sets and tags is one of the most

powerful abstractions in MOAB

– I have yet to see a construct useful in mesh-based simulation that
cannot be efficiently represented using sets and tags

 Tags are useful as both fine-grained (dense) and coarse-grained (sparse) data

– Sparse tags in MOAB are stored as (handle, value) tuples

– Dense tags are allocated/stored as (value1, value2, …) for sequences of entity handles

– Pointer to tag memory can be retrieved through API, useful for unstructured array-based
simulations

 A set can have parent and child sets, and this is different from contains relations

– Can define general directed graphs of sets

 Some more about sets:

– The whole mesh is specified through the MOAB API as set handle zero (0)

– Eliminates a whole set of functions for accessing entities for whole mesh vs. subset

– MOAB has 2 types of sets:

• List: order is preserved, entities can appear > 1 time (like std::vector)

• Set: order not preserved (ordered by EntityHandle), each handle can occur only once (like std::set)

– By default, MOAB does not make entities as being in sets, so can have “stale” sets

• Can specify “tracking” flag for set at creation time, treats inclusion as entity-set adjacency

• Tracking efficient memory-wise, but not necessarily time-wise; better to adjust on whole-set basis

Argonne Training Program in Extreme-Scale Computing
14

Parallel Partitions

Sets & Tags (cont)

 MOAB API does not bind specific set purposes

– No specific API support for boundary conditions, parallel parts, etc.

 MOAB defines conventions for conventional uses of sets

– MBTagConventions.h, MBParallelConventions.h define various tag names, properties

– MATERIAL_SET, DIRICHLET_SET, NEUMANN_SET, NAME, PARALLEL_PARTITION, …

 Sets & tags useful for defining “metadata” (data about the data)

– MOAB documentation includes “I/O and Metadata Storage Conventions” document that
describes some common uses

• http://www.mcs.anl.gov/~fathom/moab-docs/html/md-contents.html

• This document describes where data from specific file readers gets put in the MOAB data model

 For some meshes (cubit), sets can be used to represent original geometric model
topology

– Not enough time to describe here; check metadata document for details

Argonne Training Program in Extreme-Scale Computing
15

SetsNTags: Working with Sets and Tags
http://www.mcs.anl.gov/~fathom/moab-docs/html/SetsNTags_8cpp-example.html

 Interface::tag_get_handle used for both accessing current tags and creating new ones

 2 types of tag-based access:

– Get entities by type, tag: most useful for sparse tags

– Get tag values on specific entity(ies): most useful for dense tags

 For materials and boundary conditions, more memory-efficient to define grouping using
sets, and material/BC data using tags on set

 Most modern meshing tools work this way too

Argonne Training Program in Extreme-Scale Computing
16

http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

MOAB Parallel Mesh

 Recall:

– Element-based partition:
decomposition of mesh over processors such that
each element assigned to exactly one proc/part,
with vertices shared between parts

– Shared entity: an entity represented on
multiple procs

– (Part) interface entity: entity shared by multiple parts
(vertices, edges, faces in a 3D mesh & element-based partition)

– Owned entity, owner: each mesh entity owned by exactly one proc

– Ghost entity: shared non-owned entity (sometimes referred to as “halo”)

 For lots of parallel mesh usage, don’t need to think about parallel at all

– Serial mesh API works the same way

 In MOAB, parallel mesh constructs are stored using sets and tags

– Could access most of the parallel mesh data using same serial API + parallel tag conventions

 MOAB also has a ParallelComm class

– Provides convenience functions for e.g. getting shared entities, ghost entities

– Parallel functionality, e.g. resolving shared and ghost entities, exchange/reduce tags

17

P0 P1

P2

v1v2

v3v5

v4

e1

e2

t1

t2

t3

v4v1

v3v2

t1

t2

v5

v6

e2

e1

t3

t4

v2
v1

v5

t1

t2

v3

e2

t3

e1 e1

v4

e3

MOAB Parallel Mesh (cont)

 Most common way of initializing parallel mesh is by reading a file, but details are
important

– Specifying partition type (replicated, by material, geometric volume, partitioning tool)

– Post-read operations (resolve shared entities, exchange ghost cells)

 Specified in MOAB using file options string

– See User’s Guide, section 5, for list of options and common usages

 MOAB implements parallel I/O using single file approach

– Different from many other tools, which use 1FPP or other approaches

– Scalability / workflow simplicity often at odds

 File format also important

– MOAB uses HDF5 for native format, that file type used to store partitioned file

Argonne Training Program in Extreme-Scale Computing
18

19

MOAB Parallel I/O

 Data taken on Intrepid (IBM BG/P)

 Read/write for 32m hex, 64m tet elems

– Nowhere near ideal I/O bandwidth

– Absolute time tolerable in most cases

– Drastic tet time improvement after
reordering by partition

• Fewer small fragments of HDF5 datasets

 Read/resolve/ghost times

– Read times about constant

– Resolve, ghost time scaling close to linear

20

MOAB Parallel I/O: Weak Scaling

HelloParMOAB: Parallel Mesh Initilization/Access
http://www.mcs.anl.gov/~fathom/moab-docs/html/HelloParMOAB_8cpp-example.html

 Can initialize MOAB using MPI_COMM_WORLD or other communicator

– Can also use multiple ParallelComm objects, on different communicators (but sharing may not work right

currently…)

 Use ParallelComm::get_shared_entities to get shared entities by dimension and other
sharing proc (with defaults for all dimensions/other procs)

 PSTATUS_xxx enumeration/bitmask defines various parallel-relevant states

– PSTATUS_ SHARED, MULTISHARED, INTERFACE, GHOST

 Use ParallelComm::filter_pstatus to filter range based on status & Boolean (NOT/AND)

 Resolving shared, ghosted entities can be specified at file read time (using option) or as
explicit operation through ParallelComm

 MOAB does not restrict or change the way you can use MPI for other things

– i.e. does not define e.g. MOAB_MPI_Comm datatype or MOAB_MPI_Reduce function

Argonne Training Program in Extreme-Scale Computing
21

http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

Putting It Together: Parallel Lloyd Relaxation
http://www.mcs.anl.gov/~fathom/moab-docs/html/LloydRelaxation_8cpp-example.html

Argonne Training Program in Extreme-Scale Computing

it += 1

it = 10
Serial:

it += 1

it ~ 12
Parallel:

exchange_tags

http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

Putting It Together: Parallel Lloyd Relaxation (cont)
http://www.mcs.anl.gov/~fathom/moab-docs/html/LloydRelaxation_8cpp-example.html

 Initialization of mesh with shared entities resolved, one layer of ghosts exchanged

 Use centroid tag for intermediate storage of new vertex positions

 CN class cpp variables to dimension some lists

 When getting/setting tag values on multiple entities, make use of &stdvec[0] to get
pointer to memory

– STL guarantees this is valid

– stl::vector dynamically-sized, useful for mesh-based codes

 Judicious choice of default value for tag eliminates need to initialize fixed tag for unfixed
vertices

 Results:

Argonne Training Program in Extreme-Scale Computing
23

http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

iMesh, iMeshP Interfaces

 The ITAPS project defined a set of
common interfaces (APIs) for
mesh, geometry, and relations

 C-based interface, but designed to be callable directly from Fortran and C++

– Good portability, performance

– Maintenance easier

– iMeshP for parallel data, constructs

– Python also supported, through PyTAPS

 MOAB uses iMesh, iMeshP to support
Fortran-based applications

 Primary differences between MOAB, iMesh(P):

– MOAB parallel model defined entirely through sets+tags; iMeshP uses “Partition”, “Part”

– In iMeshP, when you have multiple Parts per process, ghosting across parts implies duplicate
entities in same iMeshP instance

– List handling through iMesh/iMeshP somewhat more cumbersome due to lack of
Range, std::vector data structures

• Mitigated a bit using ISO_C_BINDING for F90+

 Not enough time to describe fully here; see MOAB User’s Guide, section 7

24

implA.CC

app1.f77 app2.f90 app3.CC app4.c

implB.c implC.f77

iMesh (C) PyTAPS

app4.py

iRel/Lasso

iGeom/CGM iMesh/MOAB

Mesh-Based Tools Packaged With MOAB

 Several tools are packaged with MOAB and built by default

 mbsize

– Used to read mesh & list numbers of entities of various types

-ll option (list long): lists everything in mesh; -g and –m list geometry and material/BC sets, resp.

-f option: lists formats read and written by MOAB

 mbconvert: use to convert between file formats

– Multiple –O <read_option> -o <write_option> can be used to test reading/writing in parallel

– Use to generate vtk files for use by VisIt/ParaView

 mbpart (in mbzoltan subdirectory): partition a mesh for parallel access

– (requires Zoltan library from Sandia)

– Implements various partitioners (use –h to list), but Recursive Intertial Bisection seems to be
most reliable & relatively fast

 mbtagprop: convert tags between set- and entity-based ata

 mbskin: generate & save the skin of a mesh

Argonne Training Program in Extreme-Scale Computing
25

Advanced Topics

 Direct access to MOAB storage

– Use to obtain direct pointers to: tags (sparse & dense), connectivity, coordinates, adjacencies

– Allows near-native speed for array-based applications

– Uses iterator approach to allow for multiple “chunks” in handle/array space

– See examples DirectAccessNoHoles, DirectAccessWithHoles, DirectAccessNoHolesF90 for usage

 Mesh searching

– MOAB implements various tree types that enable local/parallel mesh searching

– Optionally with finite element shape functions for locating points in elements

– See AdaptiveKDTree class, tools/mbcoupler in source

Argonne Training Program in Extreme-Scale Computing
26

MOAB-Based Solution Transfer

 Each physics type on independent mesh

 Distributed independently

 Both meshes in same MOAB instance

p1

p3

p2

p4

OR

7M Hexes

28M Tets

Works for 2D, 3D in parallel for interpolation-based transfer
(+ global or subset conservation)

Work on tracer transport will provide basis for element-based
conservation too

MOAB currently being integrated into
ESMF to support online weight
regeneration too

p1 p2

p3 p4

p6p5

p8p7

28

Common Geometry Module (CGM)

 Library for query & modification of BREP CAD-based geometric models

 Supports various modeling engines

– Open.CASCADE (open-source)

– ACIS (commercial)

– CUBIT-ACIS (available for research purposes)

 Designed to represent geometric models as they are represented in CUBIT

 Basic model import & query

– ACIS .sat, OCC .brep, STEP, IGES

– Query # vertices/edges/faces/volumes, edge/face closest pt, face normal, etc.

 Model construction

– 3D/2D primitives, spline fitting, etc.

– Booleans, transforms, sweeping, lofting, etc.

– Not a parametric modeler like e.g. SolidWorks

 Advanced features

– Facet-based modeling

– “Virtual” topology (small feature removal)

– Decomposition for (hex) meshing

29

Common Geometry Module (CGM)

Open.CASCADE (OCC) port

 Previously, CGM only supported commercial modeling engines

– ACIS, SolidWorks, Pro/Engineer, Catia CAA

 Over the past couple years, implemented CGM port to Open.CASCADE, the only
general-purpose, open-source geometric modeling engine

 Most CGM functionality supported

– Geometry construction, booleans, transforms

– Webcut, imprinting (useful for hex & multi-material meshing)

– Virtual topology

– …

 Not supported:

– Regularize after unite

– Some history and undo operations recently added to CGM

– Somewhat slower than ACIS-based CGM

30

Lasso Relations Tool

 For some applications, need to relate mesh to geometry

– Adaptive mesh refinement

– Smooth surface-based boundary conditions

 Separation of geometry, mesh in independent components means we need a
higher-level component that depends on those

 Lasso: tool for recovering, querying, setting geometry-mesh relations

 Prerequisite for querying: restore geometry, mesh with enough information to
recover matching

 Lasso matches:

– iGeom: Entity dimension – iMesh: EntitySet GEOM_DIMENSION tag value, and

– iGeom: Entity GLOBAL_ID tag value – iMesh: EntitySet GLOBAL_ID tag value

 These matching criteria inherently implementation-dependent, though eventually
can hopefully specify generically in terms of ITAPS data model

 Current implementation works with meshes generated by CUBIT, MeshKit

Summary

 Mesh tends to be involved in front-end, back-end, of simulation process, and everywhere
in between

 Mesh-related things tend to be ideal mix between math, CS, computational science (IMO)

 MOAB & friends are easy to use, powerful tools for working with mesh-related data

 For more information:

– International Meshing Roundtable series of conferences, http://www.imr.sandia.gov

– S. Cheng, T. Dey, J. Shewchuk, “Delaunay Mesh Generation”, Chapman & Hall/CRC Press, 2012

– H. Edelsbrunner, “Geometry and Topology for Mesh Generation”, Cambridge Univ. Press, 2006

– http://trac.mcs.anl.gov/projects/ITAPS/wiki/MOAB

– http://collab.mcs.anl.gov/display/moab

– tautges@mcs.anl.gov

 MANY jobs and research topics available in this area!

Argonne Training Program in Extreme-Scale Computing
31

http://www.imr.sandia.gov/
http://trac.mcs.anl.gov/projects/ITAPS/wiki/MOAB
http://collab.mcs.anl.gov/display/moab
mailto:tautges@mcs.anl.gov

